Exercise 27

A water trough is 10 m long and a cross-section has the shape of an isosceles trapezoid that is 30 cm wide at the bottom, 80 cm wide at the top, and has height 50 cm . If the trough is being filled with water at the rate of $0.2 \mathrm{~m}^{3} / \mathrm{min}$, how fast is the water level rising when the water is 30 cm deep?

Solution

Start by drawing a schematic of the trough at a certain time.

Write an equation for the line representing the trapezoid's edge.

The aim is to find the volume $V(y)$ that water occupies if it's at a height y. In order to do this, find the area of a cross-section and then multiply it by 10 meters (1000 centimeters), the thickness.

30
This area consists of two triangles and a rectangle.

$$
\begin{aligned}
A & =\frac{1}{2} x y+30 y+\frac{1}{2} x y \\
& =x y+30 y
\end{aligned}
$$

Since we want to find $d y / d t$ when $y=30$, eliminate x in favor of y.

$$
\begin{aligned}
A & =\left(\frac{y}{2}\right) y+30 y \\
& =\frac{y^{2}}{2}+30 y
\end{aligned}
$$

Multiply the area by the thickness, 1000 centimeters, to get the volume.

$$
\begin{aligned}
V & =1000 A \\
& =1000\left(\frac{y^{2}}{2}+30 y\right) \\
& =500 y^{2}+30000 y
\end{aligned}
$$

Take the derivative of both sides with respect to t by using the chain rule.

$$
\begin{aligned}
\frac{d}{d t}(V) & =\frac{d}{d t}\left(500 y^{2}+30000 y\right) \\
\frac{d V}{d t} & =1000 y \cdot \frac{d y}{d t}+30000 \cdot \frac{d y}{d t} \\
200000 & =1000(y+30) \frac{d y}{d t}
\end{aligned}
$$

Solve for $d y / d t$.

$$
\frac{d y}{d t}=\frac{200}{y+30}
$$

Therefore, the rate that the water level is rising when the water is 30 cm deep is

$$
\left.\frac{d y}{d t}\right|_{y=30}=\frac{200}{(30)+30}=\frac{10}{3} \approx 3.333 \frac{\mathrm{~cm}}{\min } .
$$

